放電中電壓的變化
電池在放電之前活性物質微孔中的硫酸濃度與極板外主體溶液濃度相同,電池的開路電壓與此濃度相對應。放電一開始,活性物質表面處(包括孔內表面)的硫酸被消耗,酸濃度立即下降,而硫酸由主體溶液向電極表面的擴散是緩慢過程,不能立即補償所消耗的硫酸,故活性物質表面處的硫酸濃度繼續下降,而決定電極電勢數值的正是活性物質表面處的硫酸濃度,結果導致電池端電壓明顯下降,見曲線OE段。
隨著活性物質表面處硫酸濃度的繼續下降,與主體溶液之間的濃度差加大,促進了硫酸向電極表面的擴散過程,于是活性物質表面和微孔內的硫酸得到補棄。在一定的電流放電時,在某一段時間內,單位時間消耗的硫酸量大部分可由擴散的硫酸予以補充,所以活性物質表面處的硫酸濃度變化緩慢,電池端電壓比較穩定。但是由于硫酸被消耗,整體的硫酸濃度下降,又由于放電過程中活性物質的消耗,其作用面積不斷減少,真實電流密度不斷增加,過電位也不斷加大,故放電電壓隨著時間還是緩慢地下降,見曲經EFG段。隨著放電繼續進行,正、負極活性物質逐漸轉變為硫酸鉛,并向活性物質深處擴展。硫酸鉛的生成使活化物質的孔隙率降低,加劇了硫酸向微孔內部擴散的困難,硫酸鉛的導電性不良,電池內阻增加,這些原因最后導致在放電曲線的G點后,電池端電壓急劇下降,達到所規定的放電終止電壓。
充電中的電壓變化
在充電開始時,由于硫酸鉛轉化為二氧化鉛和鉛,有硫酸生成,因而活性物質表面硫酸濃度迅速增大,電池端電壓沿著OA急劇上升。當達到A點后,由于擴散,活性物質表面及微孔內的硫酸濃度不再急劇上升,端電壓的上升就較為緩慢(ABC)。這樣活性物質逐漸從硫酸鉛轉化為二氧化鉛和鉛,活性物質的孔隙也逐漸擴大,孔隙率增加。隨著充電的進行,農漸接近電化學反應的終點,即充電曲線的C點。當極板上所存硫酸鉛不多,通過硫酸鉛的溶解提供電化學氧化和還原所需的Pb”極度缺乏時,反應的難度增加,當這種難度相當于水分解的難度時,即在充入電量70%時開始析氧,即副反應2H,O一O,+4H+4e,充電曲線上端電壓明顯增加。當充入電量達90%以后,負極上的副反應,即析氫過程發生,這時電池的端電壓達到D點,兩極上大量析出氣體,進行水的電解過程,端電壓又達到一個新的穩定值,其數值取決于氫和氧的過電位,正常情況下該恒定值約為2.6V。